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Objectives

Bridge the gap between fundamental HCCI physics and chemistry 
considerations and applied models
─ Balance model fidelity with computational expediency and ultimate goal in 

mind

Demonstrate a cascade sequence where high fidelity models and 
experiments feed phenomenogical models appropriate for systems 
analysis

Apply system models to assess candidate control schemes
Multi-Variable

Engine Controller

SIGNALS IN:
1. Coolant temperature sensor
2. "Combustion" sensor :
     pressure transducer; or
     novel SOC probe; or
     ionization probe
3. Air mass flow sensor
4. Intake manifold temperature sensor
5. Intake manifold pressure sensor
6. Exhaust manifold temperature sensor
7. Exhaust manifold pressure sensor
8. Wide range oxygen sensor

RPM

Requested Torque

SIGNALS OUT:
1. Camless intake valve(s) timing
2. Spark plug for DGI mode
3. Fuel injector timing
4. Camless exhaust valve(s) timing
5. EGR control valve
6. Controllable water pump

IN OUT
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Approach
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UM Optical Engines UM Heat Transfer Engine Stanford Camless

MIT VW Engine with VVT UCB VW TDI engine UCB CAT Single Cylinder

Engine University Consortium Set-Ups
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Local Heat Fluxes
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Concept of Modified Woschni Correlation

Models need to be calibrated to provide 
accurate total heat loss Classic Woschni underpredicts heat 

transfer during compression and 
leads to unrealistic ignition 
predictions

Modified Woschni heat transfer 
model:

─Original:  A2 = 1

─Modified:  A2 = 1/6
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Experimental Burn Rate Data

Varying RPM, load, Tcool, Tinlet, A/F ratio

Generate correlations as function 
of ignition timing (one variable)
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Modeling Approaches for HCCI Engines

Zero-D

Multi-D

Quasi-D
Multi-zone

Detailed
Chemistry

Reduced
Chemistry

Predictions of ignition

Predictions of rate of 
burning

Predictions of 
emissions 

Computational 
Efficiency

Detailed
Chemistry

?

?
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Initial Modeling Approach:
Sequential CFD + Multi-zone Model

1

2

3a

3b

Open-cycle calculation 
using Kiva-3V

Temperature / Equivalence Ratio
distribution obtained before TDC

Calculation of combustion event using
Multi-zone model with Temperature Zones only

Calculation of combustion event using
Multi-zone model with T/Φ Zones

TRANSITION
POINT
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Sensitivity to Transition Timing

Calculations at LLNL showed that the point of transition from KIVA to 
the multi-zone code can affect the results (SAE 2005-01-0115)
─ Imposed Φ distribution on a 2D coarse grid (Fuel CH4)
─ Solution obtained using sequential multi-zone approach compared against 

detailed solution (KIVA-3V linked with Chemkin)
─ Implication: Temperature and composition stratification is important
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Naturally Occurring Thermal Stratification
Collaboration with Sjöberg and Dec (Sandia) - SAE 2004-01-2994
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Coupling of KIVA-3V with Multi-Zone Model (KMZ)

Instead of solving for detailed 
chemistry in each cell, at each 
timestep divide into zones of 
cells with similar properties (i.e. 
T and ϕ), and assume they 
behave in a similar manner

1

2

3

Estimate composition change and heat 
released in each zone, and re-distribute 
to corresponding KIVA-3V cells

4

Temperature zone
divided into ϕ zones

Shaded part:
3rd Temperature zone (15-35%)

ϕ
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Temperature and ϕ distributions
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Validation of Fully Coupled Kiva-3V with
Multi-Zone Model

The new model gives results that match very well the “exact” solution 
obtained by solving for detailed chemistry in every cell
Computational time is reduced significantly (~90% for 10,000 cells)
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Numerical Experiments: KMZ generated “data”
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Generate burn angles as function of ignition timing, as well as 
other variables
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System Studies Approach

Use GT-Power as platform for system modeling
Use experiments and CFD models to provide simplified 
combustion models with correct trends for ignition, burn rates and 
combustion efficiency 
Develop single-cylinder engine model with manifolds including 
thermal system submodel
Explore implementation issues at multi-cylinder and vehicle level, 
especially related to thermal transients

IGN DELAY

INTAKE COMPRESSION COMBUSTION EXHAUST

GT-POWER

DLL
-ENGHEATTRUSER
- ENGCOMBUSR

Heat 
transfer 
coefficient

Heat 
transfer 
coefficient

Heat 
transfer 
coefficient

Heat 
release 
rate

COMB. CORR.

-10

0

10

20

30

40

-8 -6 -4 -2 0 2

BURN DATA

C
A

 (D
eg

 A
TC

)

CA0 (Deg ATC)

EXPERIMENTAL
DATA POINTS

CURVE FITS

CA0

CA10

CA50

CA90

)/33700exp(103.1)( ]//[
41.177.005.14

2
TRPms KmolcalOign ⋅⋅⋅⋅×= −−−− χφτ



Bridging the Gap Between HCCI Fundamentals and Applied Models

Thermal Transients – Simulating the UM Engine

HCCI mode,SAE 2002-01-0420

SI mode
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Thermal Transients – Challenges

Stable operation possible at steady state thermal points

Transient operation unsatisfactory

380

400

420

440

460

480

0 20 40 60
time (sec)

T (K)

AVERAGE 
WALL TEMPERATURE

1

4

3

2

0

10

20

30

40

50

60

-20 -10 0 10 20 30 40

Point 3 at Steady State T3
Point 3 at T4 (hot - knocking)

P
(bar)

CA (deg ATC)

P3T4

P3T3

0

10

20

30

40

-20 -10 0 10 20 30 40

Point 2 at Steady State T2
Point 2 at T1 (cold - misfire)

P

(bar)

CA (deg ATC)

P2T1

P2T2

Advanced / knocking

Retarded / misfire



Bridging the Gap Between HCCI Fundamentals and Applied Models

Transient Compensation

Hot-to-cold compensation possible by reducing rebreathing lift or 
increasing Pinlet (both decrease EGR)

Cold-to-hot compensation not achievable (not enough EGR heat is 
available)
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Thermal Transients - Implications

HCCI regime is shifted 
depending on direction of 
transient

Hot-to-cold will extend the low 
load HCCI region

Cold-to-hot will require SI 
operation until walls warm up

Challenge is to maximize HCCI 
operating regime

Cold-to-Hot

Hot-to-Cold

Steady State
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Future Work

Refine modeling approaches and validate them against optical and metal 
engine measurements – emphasize DI, stratified operation
Extract knowledge developed from detailed CFD + comprehensive 
chemistry models and capture it into practical correlations compatible 
with “smart” phenomenological single-zone models
Provide a single-cylinder module to multi-cylinder system level, controls-
oriented simulations
Use models to develop strategies for HCCI engine in-vehicle operation 
with alternative fuels
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